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Executive Summary 

Albertans discard over five million motor vehicle tires annually. These tires are all currently 
recycled for a number of different applications, including aggregate in engineered landfills and 
manufactured products. As a result of the range of existing and emerging tire waste management 
options, the Alberta Recycling Management Authority (Alberta Recycling) wants to better 
understand the full life cycle environmental impacts of the leading options available today. This 
information can be used in three important ways: 

To identify all the key risks when choosing between recycling options. 

To determine mitigation requirements upon having selected a given management option. 

To support and inform policy decisions on waste management activities in Alberta. 

The analysis in this report provides a life cycle inventory of a range of likely, currently available 
tire recycling options. Table ES-1 presents the options evaluated, along with the original product 
or material that would be displaced by each option. Many more applications for tire waste exist, 
and new recycled tire products frequently come to market. Rather than being exhaustive, the 
options assessed in this analysis are considered representative of the range of possible 
alternatives. 

Table ES-1. Options evaluated and displaced baselines 

Recycling/Re-use Option Displaced Material or Process (Baseline) 

Tire Derived Aggregate (TDA)  Gravel 

Crumb Synthetic rubber currently used for athletic fields 

Manufactured Products: Wood Wood rig mat 

Manufactured Products: Cement Concrete curb 

Manufactured Products: Asphalt  Asphalt shingles 

Tire Derived Fuel (TDF): Coal Plants Coal-based electricity 

Tire Derived Fuel (TDF): Cement Kilns Coal 

Tire Derived Fuel (TDF): Incineration  Electricity from the Alberta grid 

This analysis follows the ISO 14044 life cycle assessment (LCA) principles and framework, 
although it has not been verified against the ISO LCA requirements and guidelines. A full life 
cycle assessment, which would include a comparison of results against local and regional 
contexts, was not performed because specific locations for new recycling operations have not 
been considered. The system activities included within the boundary were selected based on a 
qualitative assessment. Life cycle maps for each option were created to help ensure that all 
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Using the Results 

While no “outright winners” emerged from this analysis, the results provide some extremely 
valuable information for any decision-making process around these options. The following 
examples show some ways these results can be used: 

1. When considering a given tire management option for other than environmental 
reasons, these results provide insights into which environmental impacts should 
be of concern and potentially addressed.  

2. When basing decisions around specific environmental objectives, these results 
will help inform the option that best meets these objectives. For example, using 
tires to replace concrete curbs helps advance Alberta’s existing GHG reduction 
policy objectives. 

3. While using tires over gravel for engineered landfill purposes avoids the use of 
virgin materials and associated land impacts, selecting other tire recycling options 
would help avoid some of the net environmental impact increases that result from 
using tires for landfill leachate collection systems. 

4. When considering waste-to-energy related policy decisions in the province of 
Alberta, these results can inform questions around specific air emission impacts. 

Next Steps 

While these results help answer some important questions, the following recommendations are 
provided for further consideration: 

1. When considering a potential recycling facility in Alberta, research the local 
environmental context to determine whether certain environmental issues are of 
particular relevance to the recycling option in question. 

2. Given that environmental impacts are ultimately dependent on the ability to 
incorporate pollution control systems across the life cycle, be sure to inquire 
about the extent to which controls have been used to minimize emissions or 
energy use when selecting a management option. 

3. With the emergence of different waste-to-energy technologies, a detailed analysis 
of the environmental impacts when incorporating tires into the waste should be 
performed across a range of viable technology options when reliable data is 
available. 
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1. Introduction 

Few Albertans realize the sheer volume of tires discarded in the province annually. Albertans 
alone discard over five million tires per year, or 15 kilograms of tires per person - all of which 
are currently utilized by the province's tire recycling industry. Indeed, since 1992 Albertans have 
recycled over 59.4 million tires.  

As of twenty years ago, Alberta primarily managed waste tires by combusting them in cement 
kilns. Since then, a variety of re-use and recycling options has been considered with many new 
approaches deployed. In particular, waste-to-energy recovery in the province has been gaining 
attention as potential solution for tire disposal. 

As a result of the different existing and emerging tire waste management options, the Alberta 
Recycling Management Authority (Alberta Recycling) is interested in better understanding the 
full life cycle environmental impacts of the most likely options. This information can be used in 
three important ways: 

» To identify all the key risks when choosing between recycling options. 

» To determine mitigation requirements upon having selecting a given management option. 

» To support and inform policy decisions on waste management activities in Alberta. 

This initiative follows an initial phase that investigated the GHG impacts associated with the 
post-use life cycle activities of 10 different management options. This first phase drew on the 
insights of an expert steering committee, of which Pembina was one participant. Alberta 
Recycling engaged Pembina as the lead consultant for this second more comprehensive phase, 
which draws on key learnings and select data from the original work. The same steering 
committee guided both the first and second phases.  

The objectives of this analysis and report are three-fold: 

» To provide awareness of available leading tire waste management options, and their 
environmental benefits and risks from a life cycle perspective. 

To provide useful information to Alberta Recycling to inform tire waste management decision 
making processes. 

To provide useful information to community members, policy makers and interested 
stakeholders to inform their own understanding of tire waste management options, and to help 
identify and inform their questions. 

1.1 Overview of Report Structure and LCA Approach 

This analysis is consistent with ISO 14040:2006 Life Cycle Assessment (LCA) Principles and 
Framework. The first part of the report includes an overview of the objectives, audiences 
considered and the options assessed (1.0 Introduction). This is followed by an overview of the 
issues identified along with a description of the general life cycle activities considered (2.0 
Scoping).The next major part of the report includes the presentations of the results (Sections 3.0 
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and 4.0), which focus on the quantitative differences in key environmental parameters across 
options. Section 3.0 helps inform the risks and benefits associated with the individual 
management options typically considered, whereas Section 4.0 helps understand the best 
possible option on a per parameter basis. 

High level context for these issues is commented on where appropriate; however, this analysis 
did not include an impact assessment whereby the quantitative results were placed into specific 
regional or local context. As such, this analysis is more focused on developing a Life Cycle 
Inventory (or LCI) in order to discern quantitative differences between options as opposed to a 
more comprehensive LCA with environmental context. 

1.1.1 Life Cycle Process 

While this analysis follows ISO’s LCA principles and framework, it has not been verified against 
this or ISO 14044:2006 LCA Requirements and Guidelines.1 Each technology system assessed 
provides an equivalent suite of co-products, whether energy or material based. 

It should be noted that the true environmental impact of any technology or process can only be 
determined when the total amount of environmental output is quantified over a given time 
period. This is referred to as the ‘absolute’ outputs. This report only considers output ‘intensity,’ 
or rather the amount of environmental output per unit of input (tonnes tires). This approach is 
used in this analysis for comparative purposes. 

1.2 Audiences for this Report 

Table 1 below summarizes the key audiences considered for this report. 

Table 1. Audiences 

Level of Priority Audience 

Primary audience Alberta Recycling Management Authority 

Secondary audiences Government of Alberta, Alberta 
Environment 

General public 

1.3 Options Assessed 

Table 2 below provides a summary of the options assessed in this analysis and the rationale for 
their inclusion. These options were selected since they represent the range of options currently 
being used or considered in Alberta. The manufactured product options are selected based on the 
displaced proxy products and raw materials (i.e., wood, concrete and asphalt). 

                                                 
1
 ISO 14044 applies the term ‘unit process’ for the individual discrete activities within the life cycle, or system, of a 

given technology. Pembina refers to these specifically as ‘activities’ through this report, and not unit processes. 
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Table 2. Options Assessed 

Recycling/Re-use Option Description Rationale 

Tire Derived Aggregate 
(TDA)  

Used as a layer in a landfill 
for the purposes of leachate 
management to facilitate 
hydraulic conductivity prior 
to collection of the leachate.  

60%
2
 of tire waste is currently used for 

this application in Alberta representing 
32,000 tonnes of TDA per year. 

Crumb Used as a rubber 
foundation for athletic fields. 

This is currently the primary application 
of crumb.  

Manufactured Products 
(Wood Displacement)  

A rig mat, or large mat 
placed on the ground for 
ground protection and 
improved traction of drilling 
rigs, is used as a proxy. 

Many wood products could potentially 
be replaced by tires. Rig mats typically 
made out of wood have increasingly 
been made out of recycled tires. 

Manufactured Products 
(Concrete Displacement)  

Vehicle curbs in parking lots 
used as a proxy. 

There are several retailers of tire 
recycled curbs and the market for this is 
growing. 

Manufactured Products  
(Asphalt Displacement) 

Roof shingles. This is an emerging market for waste 
tires, having being sold in North 
America since 1993.

3
 

Tire Derived Fuel (TDF) – 
Coal Plants 

Processed and added to 
coal feedstock displacing up 
to an average of 10% on an 
energy basis.  

Approximately 20% of TDF is used for 
coal plants in the U.S. Along with coal 
plants and cement kilns, TDF is also 
used in paper and pulp mills, and 
industrial boilers. 

TDF – Cement Kilns Whole tires processed and 
added to coal feedstock 
displacing up to an average 
of 10% on an energy basis. 
Steel in tires displaces a 
small portion of iron ore 
inputs. 

TDF for cement kilns is primary market 
for used tires in the U.S., with 40% of all 
TDF being used in kilns. Along with coal 
plants and cement kilns, TDF is also 
used in paper and pulp mills, and 
industrial boilers. 

TDF – Incineration  100% end-of-life tires 
incinerated for the purposes 
of energy recovery. 

Several plants have existed in the U.S., 
with 7% of TDF used in dedicated 
facilities. While not necessarily being 
considered for Alberta, it is included as 
a representative waste-to-energy option. 
Also included because actual data 
exists. Further, other waste-to-energy 
technologies are still relatively 
immature.  

                                                 
2
 Alberta Recycling Management Authority, Implications of Using Tire Derived Aggregate for Landfill Leachate 

Collection Systems – Literature Review (2009), i. 
3
 http://www.articlesnatch.com/Article/Why-Choose-Rubber-Roofing-Shingles/1150009. Accessed May 18 2010. 
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1.3.1 Options Not Assessed 

A plethora of products could be manufactured using recycled tires, such as mulch for 
playgrounds, a range of mats or molded products, automotive products and even animal bedding. 
All of these could not reasonably be modelled in this analysis and as such, proxy products have 
been used to represent the range of potential products. 

At this point in time there are limited applications, and associated environmental performance 
data, of thermal conversion technologies that using waste tire as a fuel. As such, only 
incineration was modelled in this analysis. Waste-to-Energy (Thermal Conversion) includes 
information on the state of emerging thermal conversion technologies and their likely application 
in the waste tire market.  

1.3.2 Displaced Processes 

Each of these options is compared against a baseline, or what would have otherwise happened in 
the absence of the particular option occurring. Through this, we determine the net environmental 
benefit or impact. In this particular analysis, there are two sets of baselines: 

» what would have happened to the tires otherwise. 

in the absence of the waste tire providing a particular service (e.g., crumb for landfill leachate 
management) what would otherwise be used to provide this value added service (e.g., gravel for 
landfill). 

In Alberta, the existing tire management approach is generally 60% to leachate, 30% to crumb, 
and 10% to manufactured products.4 For each option assessed in this analysis, it is assumed that 
the default tire management approach in Alberta, or baseline, would be the same. Because it 
would be the same baseline regardless of the recycling option assessed, this analysis does not 
include subtracting the environmental impacts associated with the default option as this would 
actually have no bearing on the net quantitative results. Indeed, this approach makes for a more 
straightforward comparison given that that the default approach in Alberta also includes some of 
the options being independently assessed in this analysis.  

The following table includes the displaced processes or materials for the given option being 
considered. 

Table 3. Displaced Materials or Processes 

Recycling/Re-use Option Displaced Material or Process 

Tire Derived Aggregate (TDA)  Gravel 

Crumb Synthetic rubber currently used for athletic fields 

Manufactured Products: Wood Wood rig mat 

Manufactured Products: Cement Concrete curb 

                                                 
4
 Verbal communication with Alberta Recycling, meeting January 29, 2010. 
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Manufactured Products: Asphalt  Asphalt shingles 

Tire Derived Fuel (TDF) – Coal Plants Coal-based electricity 

TDF – Cement Kilns Coal 

TDF – Incineration  Electricity from the Alberta grid 

1.4 Limitations of Analysis 

While this initiative can be considered the most comprehensive life cycle analyses of tire waste 
management options in Canada, there are some limitations that should be recognized and 
potentially addressed in future iterations. These are listed here: 

Data availability was limited for certain indicators. 

An uncertainty analysis is not included.  

The inclusion of a range of potential thermal conversion technologies should be 
considered when quality data is available and their potential is real. 

A complete impact assessment whereby quantitative results are compared against local 
and regional context has not been completed. 

Land and water parameters are not quantified due to lack of available data; however, 
qualitative discussions are provided where appropriate. 

The data sources used in this analysis have some limitations, highlighted throughout the report 
and further discussed in Data Limitations and Assumptions. 
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2.1.1 Boundary Selection 

The system activities included within the boundary were selected based on Pembina’s qualitative 
assessment as to the primary sources of environmental outputs. A quantitative boundary 
selection exercise involving the energy, mass or economic inputs to activities relative to the 
functional unit was outside the scope of this initiative. Based on Pembina’s familiarity and 
experience with the life cycle of material and energy supply systems, all key activities are 
included for the purposes of technology comparison.  

The core elements of any systems evaluated in this analysis are the specific recycling process 
and the associated processes that are displaced. However, upstream emissions (e.g., 
transportation, resource extraction, fuel combustion, electricity generation) and downstream 
emissions (transportation emissions) were also included for both the recycling processes and 
displaced processes to ensure a life cycle perspective was taken. Impacts generated during 
construction and decommissioning activities are not included. These emissions are typically 
quite small once amortized over the life of a project in order to be reported on an annual basis. 
Downstream impacts such as off-gassing and leaching of installed products are not included 
since these effects are dependent on a variety of conditions and are therefore highly variable 
making them difficult to effectively model. However, these impacts are discussed qualitatively in 
Section 2.2 below. 

2.2 Issue Exploration and Identification  

A qualitative assessment of the activities within each option was performed using Pembina’s 
issues scoping templates. This includes first gaining an understanding of the “sub-activities” or 
the individual activities occurring within a given activity. For example, crumbing would involve 
such things as on-site transportation, electricity inputs, blade replacements over its lifespan, as 
well as lubricants and oils for ongoing maintenance. Understanding this helps to inform and 
ultimately identify material and energy inputs as well as environmental (and social or economic, 
if desired) outputs. From this, all potential environmental parameters can be determined and 
assessed against a given set of criteria in order to select those for modeling. 

The following describes some of the key environmental issues identified at a high level for 
manufactured Tire-Derived Products and for Tire-Derived Fuel. As storage is a key feature in 
many of the systems, the risk and impacts of tire fires are also described qualitatively. Criteria 
for selecting the environmental parameters modelled are also provided, along with the 
parameters themselves and a description of these parameters. Completed Issues Scoping 
Template provides the completed issues scoping templates. 

2.2.1 Tire-Derived Products 

Studies have shown that tire crumb (and TDA) can release chemicals into the surrounding 
environment through the air, or be volatized and leach into water.5 A range of toxic 

                                                 
5
 Mattima, Mary Jane, Et Al. Examination of Crumb Rubber Produced from Recycled Tires. Department of 

Analytical Chemistry, The Connecticut Agricultural Experiment Station (Accessed May 17, 2010) 

http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/examinationofcrumbrubberac005.pdf  
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hydrocarbons are noted and can potentially be volatized, including chemicals such as 
benzothiazole, butylated hydroxyanisole, n-hexadecane and 4-(t-octyl) phenol. Leached 
chemicals are typically heavy metals including zinc, selenium lead and cadmium.  

A European study found that the use of tire crumb for indoor fields is cause for potential health 
concerns. The study found that the use of rubber granules generated from synthetic rubbers (i.e. 
Ethylene-Propylene-Diene-Monomer or EPDM) can actually lead to lower levels of pollutants 
than TDA.6 Further, fields using tire crumb had volatile organic compound (VOC) levels up to 
three times higher than fields using synthetic rubbers. A variety of other studies examining the 
impacts of tires through both lab tests and field tests in indoor and outdoor environments show 
varying levels of VOCs and metals.7  

More recently, a U.S. EPA department has suggested that they should undertake a full risk 
assessment of using tire crumb for playgrounds stating that there is insufficient data surrounding 
the health effects of using tire crumb.8 

Additionally, the recycling of tires into new tire-derived products such as rubber mats includes 
the use of a binding agent or glue. Pembina was able to identify a polyurethane binding agent 
that is considered an allergen, which may cause respiratory failure in some cases. 

2.2.1.1 Displaced TDA Products 

Some manufactured products displaced by tire-derived products, such as concrete, wood or 
asphalt, can also release certain chemicals to the environment. Concrete products can off-gas 
formaldehydes and other chemicals depending on the additives used. Asphalt products can also 
off-gas a variety of chemicals. Meanwhile, wood products, depending on their treatment, can 
also off-gas a variety of chemicals or even potentially leach after a certain period of time.  

2.2.2 Tire Derived Fuel 

Public opposition to thermal conversion, or waste-to-energy, technologies has had a significant 
negative impact on the development of technology applications. Historically, incineration 
technologies were targeted, in part, due to a number of well-publicized uncontrolled fires in the 
past.9 Examples include the March 2002 tire fire in Roanoke County, Virginia, which engulfed 
30 million tires,10 and the February 1990 tire fire in Hagersville, Ontario, which involved 14 

                                                 
6
 Norweigan Pollution Control Authority/Norweigan Institute for Air Research (2006). Measurement of Air 

Pollution in Indoor Artificial Turf Halls (accessed May 17, 2010) 

http://www.parks.sfgov.org/wcm_recpark/SPTF/NIAP1105.pdf  
7
 California Integrated Waste Management Board (2007). Evaluation of Health Effects of Recycled Waste Tires in 

Playground and Track Products (accessed May 17, 2010) 

http://www.calrecycle.ca.gov/publications/Tires/62206013.pdf.  
8
 US EPA Region 8 (January 2008). Potential Risks of Tire Crumb (accessed March 17, 2010) 

http://www.peer.org/docs/epa/09_1_6_epa_tire_warnings.pdf.  
9
 Virginia Department of Environmental Quality, State Advisory Board (November 2007) Use of Tire-Derived Fuel 

in Virginia (accessed April 21, 2010) http://www.deq.state.va.us/export/sites/default/air/sab/Tire_Derived_Fuel.pdf.  
10

 Virginia Department of Environmental Quality, State Advisory Board (November 2007) Use of Tire-Derived Fuel 

in Virginia (accessed April 21, 2010) http://www.deq.state.va.us/export/sites/default/air/sab/Tire_Derived_Fuel.pdf.  
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million tires.11 Despite differences between incineration and uncontrolled fires, the public 
opposition mounted against any combustion of TDF. The probability and associated impacts of 
tire fires is described in detail in the following section. 

More recently, public concern about the environmental impacts of thermal conversion facilities 
in North America has shifted toward the potential release of multiple contaminants into the air 
via stack emissions and into water through ash leachate.12 Typical environmental management 
issues associated with TDF, also commonly cited by concerned environmental groups, are listed 
here: 13,14,15,16  

• Air pollution (particulates, NOx, SO2, CO, metals, acid gases and dioxins) 

• GHG emissions and associated contribution to climate change 

• Water pollution 

• Inefficiency of energy conversion 

• Solid waste products, including ash and other by-products 

• Quantity of freshwater used for process cooling 

• Health, safety and odour impacts 

Other environmentally-related issues cited by opposition groups include the following: 

• Creation of disincentives for waste reduction 

• Diversion of waste from composting and recycling 

• Diversion of funding from other waste management programs 

• Operational issues experienced by pilot projects 

Groups such as Greenpeace, Friends of the Earth and the Global Anti-Incineration Alliance have 
publicly opposed thermal conversion projects worldwide.17 These groups have promoted zero-
waste initiatives in a number of municipalities in order to reduce waste generation and combat 
development of thermal conversion technologies.18 Public and organized opposition to thermal 

                                                 
11

 CBC Digital Archives (February 12, 1990) “The Hagersville Tire Fire” (accessed April 21, 2010) 

http://archives.cbc.ca/on_this_day/02/12/. 
12

 United Nations Environment Programme (no date) Regional Overviews and Information Sources – North 

America, Topic d: Incineration (accessed April 21, 2010) 

http://www.unep.or.jp/ietc/ESTdir/Pub/MSW/RO/North_A/Topic_d.asp.  
13

 Energy Justice website: http://www.energyjustice.net/tires/.  
14

 The Blue Ridge Environmental Defense League (February 2009) Waste Gasification: Impacts on the Environment 

and Public Health (accessed April 21, 2010) http://www.bredl.org/pdf/wastegasification.pdf. 
15

 Greenaction for Health and Environmental Justice and Global Alliance for Incinerator Alternatives (June 2006) 

Incinerators in Disguise: Case Studies of Gasification, Pyrolysis, and Plasma in Europe, Asia, and the United 

States, P. 10 (accessed April 25, 2010) 

http://www.durhamenvironmentwatch.org/Incinerator%20Files/incineratorsindisguisereportjune2006.pdf. 
16

 Pat Marida, Sierra Club, Central Ohio Group (2004) “Expert Analyzes Proposed Tire Pyrolysis Plant” (COG 

Newsletter, January/February 2004) (accessed April 30, 2010) http://ohio.sierraclub.org/central/ExpertTire.asp.  
17

 Andrew Knox, University of Western Ontario (February 2005) An Overview of Incineration and EFW Technology 

as Applied to the Management of Municipal Solid Waste (MSW), (prepared for ONEIA Energy Subcommittee), P. 24 

(accessed April 27, 2010) http://www.oneia.ca/files/EFW%20-%20Knox.pdf 
18

 http://www.no-burn.org/downloads/North_America_2009_Review-1_1.pdf 
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conversion technologies have contributed to numerous approval disruptions for projects, with 
seven occurring in North America in 2009 alone.19 

2.2.2.1 TDF – Cement Kilns 

Cement kiln emissions control measures are typically lower than those at other facilities such as 
power plants, thus there is historically heightened concerns with associated air emissions.20 
Further, stack tests used to determine the change in emissions when using tires may not be 
representative of actual operating conditions. During such tests, operators may run with excess 
air to help ensure more complete combustion and control kiln conditions more precisely than 
normal. Kilns also have been known to have combustion upsets where smoke will be emitted. In 
such events toxic emissions will be more probable.21 

2.2.2.2 TDF – Coal Electricity 

Any issues identified with using tires at coal electricity generating stations were similar to TDF 
applications for cement plants. 

2.2.2.3 TDF – Dedicated Tire-to-Energy Facility 

There are very few dedicated tire-to-energy facilities globally, with four known listed below. 
One operating in Sterling, Connecticut, and run by Exeter energy has failed to meet 
environmental performance requirements on a number of occasions,22 however, its operating 
license was recently extended.23 Other known dedicated tire-to-energy facilities include: 

Modesto, California. This plant was shut down due to an uncontrolled tire fire adjacent to the 
plant and subsequent safety concerns.24 

Ford Height, Illinois. This plant was bought by Geneva Energy in 2005. Since 2006, it has been 
issued four pollution violations. In addition, it has not been issued an operating permit from the 
Illinois EPA and there is no timeline for doing so. Recently, a motion to consider tires burned at 
this site as a renewable fuel failed to pass through senate.25 

A proposed facility in Minnesota was cancelled by the proponent (Heartland Energy & 
Recycling, LLC) after citizen environmental groups successfully lobbied for the proposed plant 
to be subject to a full environmental review and environmental impact statement.26 

                                                 
19

 Global Alliance for Incinerator Alternatives (2009) Stop Incinerators – North America, 2009 in Review (accessed 

April 30, 2010) http://www.no-burn.org/downloads/North_America_2009_Review-1_1.pdf.  
20

 Carman, Neil (1997). Comments to California Integrated Waste Management Board (accessed May 18, 2010) 

http://www.energyjustice.net/tires/files/carmandangers.html.  
21

 Ibid. 
22

 Energy Justice. Exeter Energy LLC Tire Incinerator in Sterling, CT: Incomplete Timeline of 

Operations/Violations (access May 18, 2010) http://www.energyjustice.net/tires/exeter.pdf.  
23

 Conneticut Deparmt of Enivornmental Protection (April 2010). Exeter Energy Operating Permit (accessed May 

18, 2010) http://www.ct.gov/dep/lib/dep/air/permits/titlev_permits/exeter.pdf.  
24

 Energy Justice. Tire Burning Facilities (accessed May 18, 2010). http://www.energyjustice.net/tires/burners.html.  
25

 Fitzpatrick, Lauren (May 5, 2010). “Burning tires almost green in Illinois.” Southtown Star (access May 18, 

2010) http://www.southtownstar.com/news/2235194,050510tirebill.article. 
26

 South Eastern Minnesotans for Environmental Protection. SEMEP History (accessed May 18, 2010) 

http://www.semep.org/Accomplishments.htm.  
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A dedicated tire-to-energy facility was proposed for Erie, Pennsylvania by Erie Renewable 
Energy LLC. This plant was cancelled at the original location. A new site in Crawford County, 
following permitting construction could begin later this year. 27 

2.2.3 Probability and Environmental Impact of Tire Fires 

Tire fires have been virtually eliminated in recent years due to improved storage conditions. 
Scrap tires are difficult to ignite and are very difficult to extinguish once a fire starts. They do; 
however, remain a possibility if proper storage conditions are not enforced.  

Tire fires will emit many chemical compounds hazardous to human health and the environment. 
These emissions include PAHs, dioxins/furans, PCBs, heavy metals, VOCs and carcinogens. 
Even relatively small tire fires can result in high levels of toxic air emissions higher than the 
emission sources from activities modeled in this life cycle analysis.  

Tire fires represent an example of an event with a very low probability of occurring but with 
very high environmental impacts. Such events are difficult to incorporate into life cycle 
evaluations because they occur infrequently (if at all) and are not part of the average day-to-day 
activities. These events can theoretically be incorporated into the analysis by considering the 
probability of occurrence and the severity of impact; however, this study assumes that the risk of 
a tire fire is sufficiently low is  therefore not quantified in the analysis.  

A summary of research on tire fires can be found in Tire Fires. 

2.3 Environmental Parameters Quantified 

The issues scoping exercise helped to identify environmental impacts across all tire waste 
management options being considered. The following criteria were used to select parameters for 
quantification in this analysis: 

• Data availability 

• Frequency of occurrence 

• Materiality 

• Regional implications 

• Data consistency (e.g., different studies had similar results) 

Using the criteria above as a guide, and performing further associated research as required, the 
following parameters were selected for quantification in this analysis:  

Greenhouse gas emissions 

• Acid deposition 

»  Includes the emissions of acids and acid forming gasses (e.g., NOx, SOx, NH3, 
HCL) 

                                                 
27

 Trading Markets. (April 7, 2010) “Erie Renewable Energy to move tires-to-energy plant to Crawford: Energy 

plant set for Crawford” (accessed May 18, 2010) http://www.tradingmarkets.com/news/stock-alert/ip_erie-

renewable-energy-to-move-tires-to-energy-plant-to-crawford-energy-plant-set-for-crawford-895725.html  
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» Measured in SO2 equivalents, or SO2e 

• Total particulate matter 

• Carbon monoxide emissions 

• VOC emissions 

• Dioxins and furans emissions 

• Polycyclic aromatic hydrocarbons 

• Heavy metal emissions 

Given increased attention to low cost energy supply, as well as fossil fuel energy inputs being an 
indicator of environmental impact, the following two energy-related parameters were quantified: 

i. Electricity (power) input 

ii. On-site fossil fuel input (i.e. diesel, natural gas, coal, and other on-site fuels associated 
with heat and transportation, and in some instances chemical feedstocks. In the case of 
displaced coal at a coal power plant or cement kiln, the energy content of the displaced 
coal is included.) 

Land use, solid waste and water use were also considered as impacts; however, upon further 
research it was determined that these would not be quantified as the impacts were either 
considered relatively insignificant or there was a lack of data. 

2.3.1 Description of Environmental Issues 

Table 5 below provides an overview of the indicators of environmental impacts considered for 
use in the LCA. 

Table 5: Environmental indicators, impacts and associated technologies. 

Environmental 
indicator 

Measure Relevance and importance of indicator 

Power Input kWh In Alberta, electricity generation is primarily from coal and 
therefore has a relatively large environmental footprint.  The power 
input of processes is therefore an important indicator of 
environmental stress. 

On-site Fossil 
Fuel inputs 

GJ Processes that require more fossil fuels for processes such as 
transportation or heating are less environmentally friendly. 
Typically fuels used for these purposes include coal, natural gas, 
diesel and propane – all of which lead to greenhouse gas 
emissions and other environmental impacts. The energy content of 
the fuel consumed to generate the heat or power that the system 
provides are also included in this category when appropriate (i.e. 
for TDF options). The diesel required as a chemical feedstock for 
binding agent production is also included in this category, however 
synthetic rubber to make the tires is not consider a fossil fuel input 
for this analysis as it is a waste product. 

Greenhouse kg or t CO2e Emissions resulting from human activities are substantially 
increasing the atmospheric concentrations of several significant 
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Gases (GHGs) greenhouse gases, especially carbon dioxide (CO2), methane 
(CH4) and nitrous oxide (N20). These are increasing the 
greenhouse effect, resulting in an overall average warming of the 
earth’s surface. Health Canada has identified eight significant 
health concerns associated with climate change including 
temperature-related morbidity and mortality, extreme weather 
events, and air pollution-related effects.

28
 Current climate science 

calls for an aggregate reduction in industrialized countries' 
emissions to 25 to 40% below the 1990 level by 2020 and 85 to 
90% below 1990 levels by 2050.

29
  

CO2 emissions that originate from biogenic sources are not 
included in this analysis, as an equivalent amount of CO2 will be 
re-sequestered in the growth of the plant material from which it 
came. Thus, only CO2 emissions from fossil fuel sources are 
accounted for, including transportation fuels and the combustion of 
plastics. 

Acid Deposition 
(ADP) - NOx, 
SOx, HCL, 
H2S04 

g or kg SO2e Contributes to acid deposition leading to impacts on soils, lakes, 
forests, crops and buildings.  

When present with non-methane VOCs, acids are also a 
contributing factor to ground level ozone, which can cause adverse 
effects on humans, including lowered lung function and the 
development of chronic respiratory diseases. Ground-level ozone 
also has significant impact on reducing the productivity of 
agricultural crops and forests.  NOx has approximately 70% the 
acidifying potential of SO2. See NMOCs below for more 
information on ground-level ozone. 

Equivalency factors are used to relate emissions of various acids 
and acid forming compounds. 

Particulate 
Matter (PM) 

kg PM Particulate matter is comprised of tiny pieces of solid and liquid 
matter small enough to be suspended in the air. The finest of 
these particulates are primarily soot and exhaust combustion 
products that may irritate the respiratory tract and contribute to 
smog formation. Secondary sources of PM result from SO2, NOx 
and NMOC emissions that act as precursors to PM formation in 
the atmosphere. Of particular concern are PM 10 and PM 2.5 
particulates – fine particulates smaller than 10 and 2.5 microns in 
size that can penetrate deep into the lungs. These particulates can 
have a serious effect on respiratory function and have been linked 
to causing cancer, especially those particulates from diesel 
exhaust which contain carcinogenic fuel combustion products.

30
 

Carbon 
Monoxide 

g CO Carbon monoxide is a toxic gas. At low levels it causes fatigue and 
can cause chest pain for people with heart disease. At higher 
concentrations it can cause impaired vision and coordination along 
with headaches, dizziness, confusion and nausea. At very high 

                                                 
28

  http://www.hc-sc.gc.ca/ewh-semt/climat/impact/index-eng.php. 
29

  The Case for Deep Reductions: Canada’s Role in Preventing Dangerous Climate Change, An investigation by the 

David Suzuki Foundation and the Pembina Institute, 2005. 
30

 R.F. Webb Corporate Ltd., The Environmental Effects of Transportation Fuels – Final Report, Ottawa, ON: 

Natural Resources Canada, 1993. 



Issues Scoping 

The Pembina Institute 14 End-of-Life Tire Management LCA 

concentrations CO exposure is fatal. Acute effects include angina, 
impaired vision and reduced brain function.

31
 

Volatile Organic 
Compounds 
(NMOCs) 

g NMVOC When present with NOx, non-methane VOCs are key precursors to 
the production of ground-level ozone. The relationship between 
ground-level ozone and the NOx and NMVOC precursors involves 
a very complex non-linear photo-oxidation process, and therefore 
representing the quantities and concentration of these precursors 
provides only a rough proxy for the actual environmental impacts 
of ground-level ozone. The scale of environmental impacts is 
regional, which can cause adverse effects on humans, including 
lowered lung function and the development of chronic respiratory 
diseases. Ground-level ozone also has significant impact on 
reducing the productivity of agricultural crops and forests.   

Dioxins and 
Furans 

ug Dioxins and furans are generated from a wide range of combustion 
sources. There are 210 different dioxins and furans, all of which 
have the same basic chemical structure with chlorine atoms as 
part of their make-up. Furans are similar, but have a different 
structure. These substances vary widely in toxicity. They work their 
way up the food chain by moving into and remaining stored in 
body fat. Health effects associated with human exposure to dioxins 
include skin disorders, such as chloracne, liver problems, 
impairment of the immune system, the endocrine system and 
reproductive functions, effects on the developing nervous system 
and other developmental events, and certain types of cancers.

32
 

Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs) 

mg Some PAHs have been identified as carcinogens, mutagens and 
teratogens.

33
 

Air Emissions – 
Heavy Metals 
(Mercury, Lead, 
Cadmium) 

g The atmospheric levels of these heavy metals are typically low, 
however, they contribute to the deposition and build-up in soils. 
Such heavy metals are persistent in the environment as they do 
not biodegrade and are subject to bioaccumulation in food chains. 

2.4 Quality of Data 

2.4.1 Data Selection 

Data from a number of sources was used for this LCA and are listed below.  

• Actual operating data (i.e. electricity and heating use at recycling facilities). 

• NRCan and Environment Canada data. 

                                                 
31

 EPA, An Introduction to Indoor Air Quality: Carbon Monoxide (accessed May 19, 2010) 

http://www.epa.gov/iaq/co.html.  
32

 Health Canada. http://www.hc-sc.gc.ca/iyh-vsv/environ/dioxin_e.html#is. Accessed May 29th, 2008. 
33

 Luch, A. (2005). The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. London: Imperial College 

Press. 
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• Pembina’s own LCI database drawing on a variety of sources. 

• National Renewable Energy Laboratory (NREL) LCA database. 

• Other sources such as emissions tests and facility operating licences. 

Actual data representing operations occurring in Alberta and Canada were obtained to the extent 
possible. The NREL LCA database was the next key source of operating data. NREL is a branch 
of the US Department of Energy and has increasingly become a key source of LCA information 
in North America based on its comprehensiveness. Pembina is also confident in this database as 
it has cross referenced many of its factors and also been in discussions with its staff. 

All data sources are fully referenced in Data Sources. 

2.4.2 Uncertainty 

While the data sources used in this analysis are considered as reliable as any leading LCA, some 
uncertainty will always exist for numerous reasons. For example, the data is only representative 
of a generic process, the data may not be current, or there is limited information provided about 
the dataset.  Some of the uncertainty associated with the data used in this analysis stems from: 

Multiple datasets are required as a single dataset does not always include all environmental 
parameters 

Some datasets either make no reference to a parameter or assigns it a zero, in which case it is 
difficult to determine if that means there is no release of that parameter or if it was not measured. 
Note that in all cases where a pollutant was not reported, it is reported as DNR, or Did Not 
Report, in this analysis. 

Emission factors for some processes are based on test burns done at a variety of facilities and 
therefore averaged. 
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3. Results: Comparison of 
Emissions by Recycling 
Option 

This section summarizes the life cycle results for each recycling option compared against its 
baseline scenario. The results for each recycling option are summarized into a combination graph 
that contains both bar charts and line charts. Each recycling option graph displays three series of 
data: 

» The emissions from the tire recycling activities are categorized into life cycle stages and 
graphed as a bar chart with the bars presented above the horizontal x-axis. 

» The emissions from the baseline scenario, or displaced process, are graphed as a bar chart 
and presented as a negative number, or credit, as these impacts would now be avoided. 
The avoided impacts from the displaced options are presented below the horizontal x-
axis. 

» The net difference between the recycling option and the baseline scenario is presented as 
a line chart. A value below the x-axis indicates a net benefit of that parameter where a 
value above indicates a net increase. 

 
It is important to note that the units for each of the parameters on the graphs are different from 
one another in order to ensure all parameters can be displayed on the same graph. While this is 
useful to capture all information on a single figure, the relative importance of the results can be 
misleading at times. For example, there may be a large change in the relative amount of a given 
parameter between the two cases compared, but at times these large changes do not show on the 
graph. This is purely because of the scales used, as there are different units for the different 
parameters. While the figures below provide a good indication of differences per parameter, each 
parameter must be considered independently and not be compared against each other. Further, it 
is important to consider the magnitude of change for a given parameter (i.e., how many times 
larger or smaller is the recycling option vs. the baseline), particularly if it was a relatively large 
number to begin with (i.e. the baseline). See the results comments for a discussion of results, and 
Table 7 for data on net life cycle differences between options per parameter. 

The description of net increases or decreases compared to the baseline in each of the sub sections 
below include highlights of those parameters that were considered to have the most significant 
changes relative to the other options, as provided in Section 4.  
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» The tire-to-energy options show moderate GHG benefits (net basis), and all result 
in CO and dioxin/furan increases. While the absolute amounts of GHG reductions 
are certainly material relative to many of the other options, the percent change 
from the baseline is relatively minor. 

» The cement kiln option shows considerable PM and dioxin/furan increases. 

» Coal power plant shows an increase in ADP emissions, however this will largely 
be a factor of the on-site environmental controls. 

» Both the cement kiln and T2E facility show VOC increases. 

When reflecting on the results, it is important to recall the key data limitations which are 
summarized here: 

» Limited data is available for dioxin/furans, but the data that exists indicates that there will 
be an increase for the TDF applications (coal, cement, tire incineration). Dioxin/furan 
emissions can be destroyed on-site by allowing for high combustion temperatures, 
adequate combustion times and turbulence to distribute heat.37 Hence dioxin/furan 
emissions will vary drastically from site-to-site depending on how aggressively they are 
managed. 

Dioxin/furans, PAH and heavy metals have incomplete data. While data exists for some 
activities, many activities do not have sufficient data and thus it is important to draw any major 
conclusions with caution.  

                                                 
37

 The Dow Chemical Company. Dow Sustainability – How Dioxins and Furans are Formed. Accessed online May 

2010 at http://www.dow.com/commitments/debates/dioxin/definitions/how.htm  
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Figure 16: Dioxin and Furan Resu

Net Increases: 

Only cement kiln and TDF T2E r
All other recycling options showe
options. 

Dioxin and furan emissions are u
combustion processes.39 Of the e
(cement kiln) and T2E are of mos
emissions.  

Data on dioxins and furans for ea
data, with the cement kiln data or
emissions can be somewhat mana
different levels of emissions. As 
emissions of dioxins and furans w

Net Decreases: 

None. 

4.9 PAH 

PAH emissions for each of the ei
vertical axis on this chart has bee
range of the values (i.e. max/min
displayed in order to effectively p

                                                 
39

 United Nations Environment Program

of PCDD/PCDF. Accessed online May 

mparison of Options by Environmental  Parameter 

35 End-of-Life Tire

sults 

E recycling options reported any levels of dioxin/f
wed negligible results compared with cement kiln

unwanted byproducts generated from industrial c
 eight recycling options considered, TDF (coal pla
ost concern since it is expected they will have the

 each of the three TDF options come from multiple
originating from a single cement plant. Since diox

anaged by modifying the combustion process, each
s such, any conclusions must be drawn with cauti

s will be site specific. 

 eight recycling options are compared in Figure 17
een scaled to display the net values of each option
in) for the TDF (coal plant and cement kiln) data a
y present the other options. 

amme. 2000. Dioxin and Furan Inventories. National and R

y 2010 at http://www.bvsde.paho.org/bvsacd/cd27/dioxinin

ire Management LCA 

 

n/furan emissions. 
iln and TDF T2E 

l chemical and 
plant), TDF 
the largest on-site 

ple sources of 
ioxin and furan 
ach site will have 
ution as actual 

17 below. The 
on but the full 
ta are actually not 

d Regional Emissions 

inventory.pdf.  



Results: Com

The Pembina Institute 

 

Figure 17: PAH Results 
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Figure 18: Heavy Metal Results 
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5. Conclusions 

While Albertans discard a significant amount of tires on an annual basis, fortunately there are 
different options for end-of-life applications of these tires. The environmental outputs of eight 
prominent options have been quantified on a life cycle basis in this analysis. Like many, if not 
most, LCAs there is no single option that demonstrates overwhelmingly benefits over others. 
Rather, this life cycle analysis has helped to: 

• identify the key environmental issues of concern when selecting a particular management 
option. 

• understand which options demonstrate the most benefits for a given environmental 
indicator. 

• understand which option demonstrates the most overall environmental benefits. 

Based on these questions and the associated qualitative and quantitative analysis, the following 
general conclusions can be drawn: 

» Of all the recycling options assessed, no single option showed a net benefit for all of the 
indicators quantified. 

» Air emissions are a critical environmental output from all of the different options 
considered. While terrestrial and water (quantity and quality) impacts certainly may exist, 
no options were seen as to have any unique or relatively significant impacts in these 
areas. This was determined through a qualitative assessment by Pembina and reinforced 
by our review of existing data. 

Some specific conclusions on the relative performance of the options can be drawn as well. 

» Displacing concrete and asphalt shingles show the most overall benefits of all the options. 

» Displacing concrete and asphalt shingles delivers the highest GHG net benefits.  

» Rubber curbs over concrete also delivers significant reductions in PM, CO, and marginal 
reductions in ADP, but does result in a net increase of VOC emissions.  

» Displacing asphalt shingles also delivers relatively significant reductions across multiple 
indicators, particularly VOCs. While there are increases in CO emissions associated with 
this option, the increase is less than the coal displacement options (coal power or cement 
kiln). 

Two options demonstrated fewer overall benefits than the others, based on both the number of 
parameters that decreased as a result of the recycling option and the magnitude of the decreases: 
TDA to replace gravel for landfill leachate collection systems and tire manufactured products to 
replace wood ones.  

Note that the benefits of avoiding resource extraction, such as gravel or virgin steel, were not 
specifically quantified in this analysis. Thus, while some recycling options may show few overall 
benefits in air emissions the avoidance of raw natural materials should also be considered, 
particularly in the local context. 
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While this LCA uses the best available data, certain data limitations exist. Key data limitations 
are: 

» Certain data for dioxins/furans, PAHs and heavy metals were not readily 
available(see Table 8 to Table 10 in Section 7. 

» Air emission limits, not actual, were incorporated for the dedicated tire-to-energy 
facility in this analysis. 

» Many air emissions can be further reduced at a variety of activities through 
emission control measures. This could be through mitigation control technologies 
or through new, more energy efficient, technologies. Many times cost is the key 
barrier to further reducing environmental impacts. 

Using the Results 

While no “outright winners” emerged from this analysis, the results provide some extremely 
valuable information for any decision-making process around these options. The following 
examples show some ways these results can be used: 

» When considering a given tire management option for other than environmental reasons, 
these results provide insights into which environmental impacts should be of concern and 
potentially addressed.  

» When basing decisions around specific environmental objectives, these results will help 
inform the option that best meets these objectives. For example, using tires to replace 
concrete curbs helps advance Alberta’s existing GHG reduction policy objectives. 

» While using tires over gravel for engineered landfill purposes avoids the use of virgin 
materials and associated land impacts, selecting other tire recycling options would help 
avoid some of the net environmental impact increases that result from using tires for 
landfill leachate collection systems. 

» When considering waste-to-energy related policy decisions in the province of Alberta, 
these results can inform questions around specific air emission impacts. 

 

Next Steps 

While these results help answer some important questions, the following recommendations are 
provided for further consideration: 

» When considering a potential recycling facility in Alberta, perform research on the local 
environmental context to inform whether certain environmental issues are of particular 
relevance to the recycling option in question.  

» Given the environmental impacts are ultimately dependent on the ability to incorporate 
pollution controls systems across the life cycle, when selecting a management option 
ensure to inquire about the extent to which controls have been used to minimize 
emissions or energy use. 

» With the emergence of different waste-to-energy technologies, a detailed analysis of the 
environmental impacts when incorporating tires into the waste should be performed 
across a range of viable options when reliable data is available.  
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6. Life Cycle Activity Maps 

 

Figure 20: Activity Map – Recycle Tires into TDA Leachate Collection System 

 

 

Figure 21: Activity Map – Produce Gravel Leachate Collection System 
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Figure 22: Activity Map – Recycle Tires into Rubber Rig Mats 

Figure 23: Activity Map – Produce Timber Rig Mats 
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Figure 24: Activity Map – Recycle Tires into Rubber Curbs 

 

Figure 25: Activity Map – Produce Concrete Curbs 
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Figure 26: Activity Map – Recycle Tires into Rubber Shingles 

 

 

Figure 27: Activity Map – Produce Asphalt Shingles 
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Figure 28: Activity Map – Recycle Tires into Crumb 

 

Figure 29: Activity Map – Produce EPDM Crumb 
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Figure 30: Activity Map – Process

Figure 31: Activity Map – Produce
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Figure 32: Activity Map - Process Tires in Cement Kiln 

 

Figure 33: Activity Map - Produce Cement 
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Figure 34: Activity Map - Process Tires in Dedicated Tire to Energy (T2E) Plant 

 

 

Figure 35: Activity Map - Produce Power Alberta Power Grid 
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7. Data Limitations and 
Assumptions 

7.1 General Data Limitations 

» There is a large discrepancy between the heavy metal emissions for recycling steel (dataset 
from Europe) vs. manufacturing virgin steel (dataset from USA). Heavy metals will be 
emitted from process and electricity production activities. Recycling steel uses a substantial 
amount of electricity in an electric arc furnace and this will impact the steel recycling 
emission factors since emissions are dependent on the grid fuel mix. This study uses an RTI 
steel recycling dataset where lead (Pb) was the only heavy metal considered from 3 steel 
recycling operations (Canada, USA, Europe). To complete the dataset for the heavy metals 
category, additional heavy metals (mercury, cadmium, arsenic, chromium, cobalt and 
manganese) were added to the RTI dataset as these are emitted from the production of AB 
power grid. These additions assumed an electricity consumption of 3.66 GJ electricity per 
tonne of scrap steel processed.40 

Data was readily available for all environmental indicators except for dioxins/furans, PAHs 
and heavy metals. Activities where this data was not available are shown in the following 
tables. However, the absence of data does not necessarily reflect that these particular 
emissions are generated from these activities. 

Table 8, Table 9 and Table 10 below describe where data was not reported for each activity of 
each recycling option for dioxins/furans, PAHs and heavy metals. 

Table 8: Data Limitations for Dioxins/Furans 

Recycling Option Activity 

All All transportation activities (e.g. transportation of tires or final 
products). 

Rubber rig mats, rubber curbs, 
rubber shingles 

Produce manufacturing binding agent. 

Rubber rig mats (baseline) Produce construction timber. 

Rubber curbs (baseline) Produce precast concrete. 

Rubber  crumb (baseline) Produce polypropylene and propylene. 

                                                 
40

 ICF, Determination of the Impact of Waste Management Activities on GHG Emissions: 2005 Update (2005), 

p128. Exhibit B-14 Energy Use for Recycled Production of Steel. 
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Rubber rig mats, rubber curbs, 
rubber shingles, tire crumb, TDF 
(Coal Power Plant) 

Recycle steel.
41

 

Supporting activities Combustion of natural gas, gasoline, diesel, light fuel oil, LPG 
and bituminous coal in equipment. 

Operation of inventory management equipment. 

Upstream production of natural gas. 

Extract crude oil. 

Transport crude oil (pipeline). 

Refine crude oil. 

Transport by train. 

Transport by barge. 

 

Table 9: Data Limitations for PAHs 

Recycling Option Activity 

All All transportation activities (e.g. transportation of tires or final 
products). 

Rubber shingles (baseline) Produce asphalt shingles. 

Rubber rig mats, rubber curbs, 
rubber shingles 

Produce manufacturing binding agent. 

Rubber rig mats (baseline) Produce construction timber. 

Rubber curbs (baseline) Produce precast concrete. 

Rubber crumb (baseline) Produce polypropylene. 

Mine and crush limestone. 

T2E Process tires in T2E 

Rubber rig mats, rubber curbs, 
rubber shingles, tire crumb, TDF 
(Coal Power Plant) 

Recycle steel. 

Supporting activities Combustion of natural gas, diesel, heavy fuel oil, LPG and 
bituminous coal in equipment. 

Operation of inventory management equipment. 

                                                 
41

 Steel recycling results in the formation of dioxins/furans. The Canadian Council of Ministers of the Environment 

notes that 7% of Canada’s dioxins/furans annual emissions are from steel recycling. Accessed online May 2010 at 

http://www.ccme.ca/ourwork/air.html?category_id=95.  
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Upstream production of natural gas. 

Extract crude oil. 

Transport crude oil (pipeline). 

Refine crude oil. 

Transport by train. 

Transport by barge. 

 

 

Table 10: Data Limitations for Heavy Metals 

Recycling Option Activity 

All All transportation activities (e.g. transportation of tires or final 
products). 

Rubber rig mats, rubber curbs, 
rubber shingles 

Produce manufacturing binding agent. 

Rubber rig mats (baseline) Produce construction timber. 

Rubber curbs (baseline) Produce precast concrete. 

Rubber crumb (baseline) Produce propylene. 

Mine and crush limestone. 

Supporting activities Combustion of gasoline, diesel, light fuel oil and LPG in 
equipment. 

Operation of inventory management equipment. 

Upstream production of natural gas. 

Extract crude oil. 

Transport crude oil (pipeline). 

Refine crude oil. 

Transport by train. 

Transport by barge. 

 

 

Recycling Option 2 - 4 (Rubber Rig Mats, Rubber Curbs, Rubber Shingles) 

Used the production of methylene diphenyl diisocyanate to estimate the impacts of the 
production of the binding agent for the rubber product. 
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Recycling Option 5 (Rubber Crumb) 

Baseline for this option is EPDM crumb as per a Swedish LCA42 that examined end-of-life tires. 
EPDM crumb can be used on athletic fields in place of tire crumb. 

» As with the Swedish LCA there was no data available for the manufacturing of 
EPDM. Following a similar procedure we estimated the impacts based on a 50% 
mix of calcium carbonate and polypropylene. As a precursor to polypropylene the 
impacts of manufacturing propylene were included. 

» Assumed no additional energy was required for the crumbing of the EPDM due to 
a lack of information. 

Recycling Option 6 (TDF Coal Power Plant) 

Shredded tires with the steel removed are used in coal power plants. Using tire shred allows for a 
more controlled feed rate and more consistent combustion efficiency. The EPA notes that “the 
optimum size of the tire pieces is 1 inch x 1 inch and it must be de-wired”43 

The data used for displacing coal with tires was provided by the EPA for a 10% displacement. 
This displacement is assumed on an energy basis. The energy content of shredded tire with steel 
removed was set at 32,000MJ/tonne44, while for coal it was set at 25,430MJ/tonne.  As a result 
each tonne of tire shred replaces 1.26 tonnes of coal. 

The impact on specific emissions are shown in Table 11 below. 

» The change in CO2 emissions is based on data provided by CANMET which 
compares the emissions of tire shred with the steel removed to that of thermal 
coal.  

» For all other indicators, the change in emissions are based on test data from EPA 
(1997), Air Emissions from Scrap Tire Combustion: 

• Facility B (tested at 5% and 10% TDF) 

• Facility C (tested at 7% TDF) 

• Facility D (tested at 5%, 10%, 15% and 20% TDF) 

» If testing was done at a mix other than 10% it was assumed that the results could 
scale linearly (i.e. the emissions change at 5% would be half that at 10%). 

» The worst case scenario for each emissions type was taken to ensure a 
conservative forecast of the impacts of using TDF. 

» These changes in emissions are applied to the emissions of generating coal 
electricity using 100% coal based on data from NREL. 

Table 11: Change in Emissions at Coal Plant 

���������

�	�
����
�

��
�����
����� Observed Change Source 

��� ���� 29% at 15% TDF EPA - Facility D 

��	� 
��� 28% at 5% TDF EPA - Facility B 

                                                 
42

 Hallberg, Lisa et al (2006). Comparative Life Cycle Assessment of the Utilization of Used Tyres. 
43

 EPA, Tire Derived Fuel (accessed May 19, 2010) http://www.epa.gov/waste/conserve/materials/tires/tdf.htm  
44

 Alexandra Pehlken and Elhachmi Essadiqi, Scrap Tire Recycling in Canada, CANMET Material Technology 

Laboratory (2005). Table 8-3. 
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��
� 	��� 15% at 7%TDF EPA - Facility C 

���� ����� -23% at 7% TDF EPA - Facility C 

��� ����� -28% at 7% TDF EPA - Facility C 

��� 
���� 378% at 7% TDF EPA - Facility C 

���� ����� 99% at 7% TDF EPA - Facility C 

��� ��� 3% at 10% TDF EPA - Facility C 

���
��������� ��� 

�!�  Based on Cement Kiln Data 

��	� ��"�� -17% at 100% tires CANMET 

Dioxin/furan data from coal to tire fuel switch was not available. It is assumed that emissions 
will increase similarly at the coal plant as at the cement kiln. Dioxin/furan emissions are 
estimated using the cement kiln data on a per tonne tire combusted basis. 

Recycling Option 7 (TDF Cement Kiln) 

Both whole tires and shred can be used at cement kilns. We have assumed the use of tire shred 
with steel intact. 

An energy balance was performed to determine how much coal is displaced with tires. The 
energy content of tires was set at 27,000 MJ/tonne, while for coal it was set at 25,430MJ/tonne.  
As a result each tonne of tires replaces 1.06 tonnes of coal. 

We have assumed a 10% TDF mix by energy. However our methodology would produce the 
same results if a different mix was selected. 

Based on literature it was assumed that no additional ash is produced through the use of tires.45  

The impacts on specific emissions are shown in Table 12. 

» The change in CO2 emissions is based on data provided by CANMET which 
compares the emissions of whole tires to that of thermal coal.  

» For all other indicators, the change in emissions are best on test data reported for 
in three different reports: 

• EPA (1997), Air Emissions from Scrap Tire Combustion
46 

• Scrap Tire Management Council (2005), The Use of Scrap Tires in Rotary 

Cement Kilns 

• Delta Air Quality Services (1999), AB2588 Emissions Testing at California 

Portland Cement Company’s Colton Plant; Coal and Coal with Tires Firing. 

» If testing was done at a mix other than 10% it was assumed that the results could 
scale linearly (i.e. the emissions change at 5% would be half that at 10%). 

» The worst case scenario for each emissions type was taken to ensure a 
conservative forecast of the impacts of using TDF. 

» These changes in emissions are applied to the emissions of a cement kiln using 
100% coal based on data from NREL. 

Table 12: Change in Emissions at Cement Kiln 

                                                 
45

 Alexandra Pehlken and Elhachmi Essadiqi, Scrap Tire Recycling in Canada, CANMET Material Technology 

Laboratory (2005). 
46

See data for Facility I 
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��������

�	�
����
�

��
�����
����� Observed Change Source 

��	� ��#��� -14% at 100% tires CANMET
47

 

��� $#	��
8.01lbs/hr at 11% 
vs 7.35lbs/hr Delta Air Quality Services

48
 

��	� 	#
�� 7% at 28% TDF Scrap Tire Management Council
49

 

��� �#��� 36% at 28% TDF Scrap Tire Management Council 

��
� ���#$�� -33% at 28% TDF Scrap Tire Management Council 

�%& ��� ��	#
�� -35% at 28% TDF Scrap Tire Management Council  

'���� ��#	�� 37% at 28% TDF Scrap Tire Management Council  

���� 		����
0.43 at 11% vs 
0.017 Delta Air Quality Services 

���
��������� ��� 
�#
�� 1.68 @11% vs 1.05 Delta Air Quality Services 

Recycling Option 8 (TDF T2E) 

Emissions for the dedicated tire-to-energy facility are based off of the emissions limits set for the 
Exeter facility located in Sterling, CT. The latest operating permit was issued in April, 2010. A 
summary of the key emission limits is presented below: 

Table 13: Exeter Emission Limits 

Factor Value Units 

Ouputs - NOx 0.12 lb/MMBTU 

Ouputs - Sox 0.109 lb/MMBTU 

Ouputs - PM 0.02 lb/MMBTU 

Ouputs - CO 0.167 lb/MMBTU 

Outputs - VOC 0.03 lb/MMBTU 

Outputs - H2SO4 0.028 lb/MMBTU 

   

���� 	�� (()*�+%&�����,��	����	�

���
���-���� ��� ��� �./0�1)�,��	����	�

�%�1��2� �#���$� ).�,��	����	�

� 0)��)� �#���� ).�,��	����	�

Emissions limits expressed in lb/MMBTU were converted to g/GJ and then g/tonne of tire 
assuming 27GJ/tonne of tires.50 

CO2 emissions were assumed to be 2080kg/tonne of tires based on CANMET data.51 

                                                 
47

 Alexandra Pehlken and Elhachmi Essadiqi, Scrap Tire Recycling in Canada, CANMET Material Technology 

Laboratory (2005). 
48

 Delta Air Quality Services (1999), AB2588 Emissions Testing at California Portland Cement Company’s Colton 

Plant; Coal and Coal with Tires Firing. 
49

 Michael Blumenthal, The Use of Scrap Tires in Rotary Cement Kilns, Scrap Tire Management Council, 

Washington D.C. (2005). 
50

 Alexandra Pehlken and Elhachmi Essadiqi, Scrap Tire Recycling in Canada, CANMET Material Technology 

Laboratory (2005). 
51

 Alexandra Pehlken and Elhachmi Essadiqi, Scrap Tire Recycling in Canada, CANMET Material Technology 

Laboratory (2005). 
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Emissions of HCL, dioxins and furans, mercury, cadmium and lead expressed in lb/mmbtu were 
estimated by creating a conversion factor for “mg/dscm” to “lb/mmbtu” based on additional 
emission limit information for NOx, SOx, PM and CO. 

Acidification Equivalency Coefficients 

Acidification, or “ADP” in this analysis is calculated for each activity using the coefficients 
found in Table 14 below. Each species of acid emissions are taken in relation to sulfur dioxide. 
All acid emissions are summed in units of SO2e or SO2 equivalent.  

Table 14: Acidification Coefficients
52

 

Substance Chemical Formula 
kg H+ moles-e / kg 

substance 
Coefficients 

Nitrogen Dioxide NO2 40 0.79 

Ammonia NH3 95 1.88 

Hydrochloric Acid HCl 45 0.88 

Hydrofluoric Acid HF 81 1.60 

Sulfur Dioxide SO2 51 1.00 

Nitric Oxide HNO3 61 1.21 

Nitrogen Oxides NOx 40 0.79 

Sulfur Oxides SOx 51 1.00 

Heavy Metals Considered 

In the USA of the 189 elements and compounds that are defined as HAPs (hazardous air 
pollutants), “known or suspected of causing cancer or other serious health effects” 11 are metals: 
As, Be, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb, Se (CCT, 1997).  

Some of these elements are in very small amounts necessary for humans (Cu, Se, Cr, Ni) whilst 
others are carcinogenic or toxic at small or very small amounts, affecting for example the central 
nervous system (Hg, Pb, Se, As), the kidneys or liver (Hg, Pb, Se, Cd, Cu) or the skin, bones or 
teeth (Ni, Sb, Cd, Se, Cu, Cr). 

Based on this information, we have adopted the US EPA’s list of metals classified as hazardous 
air pollutants for the tire LCA study. This includes: 

Arsenic and its compounds (As) 

Beryllium and its compounds (Be) 

Cadmium and its compounds (Cd) 

Cobalt and its compounds (Co) 

Chromium and its compounds (Cr) 

Mercury and its compounds (Hg) 
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Manganese and its compounds (Mn) 

Nickel and its compounds (Ni) 

Lead and its compounds (Pb) 

Antimony and its compounds (Sb) 

Selenium and its compounds (Se) 

Displacement Ratios 

Rubber products will displace their baseline counterparts based on volume to mass ratio and 
lifespan. These are shown as “Material Displacement” and “Lifespan Displacement” columns in 
Table 15 below. A “Total Displacement” column is calculated by multiplying the preceding two 
columns together. These displacement ratios are used to determine how much activity will be 
displaced in the baseline scenario when recycling 1 tonne of tires. 

Table 15: Displacement Ratios 

Material 
Material 

Displacement 
Lifespan 

Displacement 
Total 

Displacement Units 

Gravel  1.7 unknown 1.7 
T gravel /  
T tires  

Timber  1 3 3 
T timber /  
T tires  

Concrete Curbs 1.4 4 5.6 
T concrete /  
T tires  

Asphalt Shingles 2 unknown 2 
T asphalt shingles /  
T tires  

EPDM Crumb 1.22 1 1.22 

T EPDM crumb /  

T tire crumb 

Coal (coal plant) 1.26 1 1.26 
T coal saved /  
T tire shred 

Coal (cement kilns) 1.06 1 1.06 
T coal saved /  
T tires  

 

The operating performance of rubber products over their baseline products was not analyzed. For 
example, the insulation effects of using rubber shingles over asphalt shingles were not 
considered. 
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8. Waste-to-Energy 
(Thermal Conversion) 

This section examines waste-to-energy options that are currently available and could potentially 
be used to manage tire waste. These technologies were not included in the LCA due to a lack of 
technology maturity for application with tires as well as an associated lack of data. Incineration, 
gasification, pyrolisis and plasma technologies are discussed. For each we include: 

• Description of technology status (mature, emerging) 

• State of the technology 

• Highlights of information, if any, and related TDF applications 

• Best known information sources for the technology 

8.1 Incineration 

8.1.1 Description of Technology 
During incineration, waste is combusted and heat from the combustion process is used to 
generate steam, which is then used for district heating, industrial processes or power generation.  

 

Figure 36. Incineration process diagram.
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The incineration process also produces waste residue in the form of flue gases and ash. An air 
pollution control system (APC) cleans the flue gas using a variety of air pollution control units 
before the flue gas is released to the atmosphere. Bottom ash and other inorganic components in 
the waste, are either disposed of in landfills or when possible, used as aggregate for various 
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processes such as cement and road construction. Fly ash is not useable and must be disposed of 
in a hazardous waste disposal site. Because bottom ash is often used as aggregate, on average, 
waste incineration reduces the mass of waste sent to landfill by 90%.54  

Tests of incinerator ash indicate that it is often not suitable as an aggregate material and can be a 
difficult material to dispose of. For example, one study noted that “the presence of large amounts 
of heavy metals (Zn, Pb, Cu, etc.) and also alkali chlorides and sulphates in the ash formed 
during the MSW incineration apart from their contribution in the ash-related problems also 
constitute a significant problem regarding the treatment and disposal of the generated ash 
material in an economical and environmentally friendly way.”55 Bottom ash specifically “has 
proven to be a highly inhomogeneous and difficult to handle ash material.”56 However, a portion 
of the ash produced at incinerators in Sweden is used as road construction material.57  

8.1.2 State of the technology for use with MSW or MSW and tires 
Low tipping fees at regional landfills in North America provide relatively inexpensive disposal 
of MSW.58 This has reduced the competitiveness of capital-intensive MSW-to-energy, however, 
the amount of solid waste processed in WTE facilities varies significantly by region.59  

Sweden operates a fleet of 29 incinerators that collectively processed 4,099,800 tonnes of 
municipal and industrial waste in 2006.60 Eighteen of these 29 plants produce electricity. One 
new incineration facility and two new boilers were installed in Sweden in 2008.61 

In 2005, there were 98 WTE facilities operating with the use of MSW in the United States,62 and 
an additional twelve MSW incineration facilities in England and Wales.63 

Lurgi Lentjes AG operates a fluidized bed combustion plant in Frankfurt Nordweststadt, 
Germany.64 The plant accepts 20 tonnes per hour of MSW and generates electricity using a steam 
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 Avfall Sverige: Swedish Waste Management, "Swedish Waste Management," (Avfall Sverige, 2007). 
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cycle turbine.65 The plant was originally constructed in 1964 and revamped in 1983, and has 
recently received a number of emissions control upgrades including flue gas cleaning units and 
replacement of the original incineration lines.66 

Algonquin Power Energy From Waste Inc. has been operating an MSW WTE facility since 1992 
in Brampton, Ontario that uses an incinerator coupled with a steam turbine to generate 
electricity.67 The facility consumes 500 tonnes of MSW per day and generates an output of 15 
MWe.68 The company has stated that air emissions of greatest concern for facility operators are 
particulate matter, nitrogen oxides and sulfur dioxide.69 

Montenay Inc. also operates a WTE incineration facility in South Burnaby, British Columbia that 
converts 830 tonnes of waste to steam and electricity each day.70 The facility has been operating 
since 1988, but has received a number of upgrades to its emissions control technologies over the 
years.71 Among its emissions control equipment are a carbon injection system to reduce mercury 
emissions and an ammonia injection system to manage nitrogen oxide emissions.72 

Incineration technologies have received criticism in the past for their environmental 
performance, particularly with respect to air emissions including dioxins, furans and mercury.73 
However, developments in emissions control technologies have improved the environmental 
performance of these systems.74 Reductions in mercury emissions from incinerators is due in part 
to air emission criteria and guidelines, but is also due to reduced amounts of mercury in 
commercial products.75 
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Toxic compounds, dioxins and furans are concentrated in fly and bottom ash,76 which must be 
managed as hazardous waste. Dioxins and furans are not only released from incinerated 
materials, but new dioxins and furans are also formed through the incineration process itself.77 
Landfilling is one management option, however, ash may also be incorporated into concrete for 
use in roads and pathways.78  

8.1.3 Potential for use of tires as a feedstock 

TDF incineration facilities have been economically problematic in the State of Virginia. The Tire 
Energy Corporation, at that time the only user of waste tires for fuel in Virginia, closed its 
Martinsville facility in July 2007 because there were not enough clients to purchase steam and 
costs were too high.79 The Cogentrix facility in Chesterfield County had intended to resume its 
use of TDF in August 2007, following a hiatus during which it retrofitted boilers and feed 
systems.80 However, sale of the facility was predicted to delay the use of tire-derived fuel until 
2008 or later. 
In the U.S., Exeter Energy Ltd. in Sterling, Connecticut operates a dedicated tire-to-energy 
facility that burns mainly whole tires.81 However, records show that the environmental 
performance of the facility has been fraught with challenges – the facility has been served with 
complaints and notices of violation.82 

In terms of efficiency, increasing rubber and plastic materials content in incinerator feedstock 
would improve the return on energy inputs.83 However, the energy gained from incineration of 
rubber is less than the energy that would be gained from recycling rubber materials, thus creating 
a net energy loss in the bigger picture.84 
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Tire incineration has been more popular in Japan. Table 16 (below) highlights four TDF 
incineration facilities that were operating in Japan in 2007. 

Table 16. TDF incineration facilities operating in Japan in 2007
85

 

 

Proposals for tire WFE incineration facilities in Minnesota and Ontario have been rejected by 
governments within recent years.86 Much of the public opposition to tire incineration facilities 
appears to be focused on real and received human and environmental health risks posed by air 
emissions.  

Yet, the World Council on Sustainable Development claims that emissions from TDF 
incineration under controlled conditions are no greater than those from other fuels.87 The Council 
sites lower carbon emissions then coal or petroleum coke, and reductions in nitrogen oxide, 
sulfur dioxide and carbon dioxide emissions as compared to combustion of virgin fossil fuels.88 
Ash is stated to contain fewer heavy metals than ash from coal combustion.89 

8.1.4 Best known data sources for technology applications for MSW or 
MSW and tire feedstock 

Andrew Knox, University of Western Ontario (February 2005) An Overview of Incineration and 
EFW Technology as Applied to the Management of Municipal Solid Waste (MSW), (prepared 
for ONEIA Energy Subcommittee), http://www.oneia.ca/files/EFW%20-%20Knox.pdf. 
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World Business Council for Sustainable Development (2007) Managing End-of-Life Tires – Full 
Report, 
http://www.wbcsd.org/DocRoot/lBTHZFGcpBK5OxTDXlpS/EndOfLifeTires_171208.pdf. 

8.2 Gasification 

8.2.1 Description 

 

Figure 37. Gasification process diagram.
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Gasification involves transforming feedstock into a highly combustible gas.91 This is typically 
accomplished by heating and oxidizing biomass fuel in an oxygen-deprived environment, which 
prevents complete combustion of the fuel and releases syngas.92 

“Syngas,” or synthesis gas, is a man-made gas consisting of hydrogen and carbon monoxide.
93

 

Where there is a market for syngas, gasification systems will only be used to produce a syngas 
that can be sold to a consumer, however, syngas can also be combusted to generate electricity. 

There are two main types of gasification systems used to produce heat, power or CHP. Closed-
coupled biomass gasification systems produce a syngas that is directly burned to produce heat.94 
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Two-stage gasification systems produce a syngas that is conditioned so that the gas is cleaner 
and can be burned in other applications, such as gas turbines and engines. 95 

8.2.2 State of the technology 

Gasification of MSW, or MSW and tires is currently at the pilot scale in Canada.96 

Energos currently operates six MSW grate gasification plants in Germany and Norway.97 

Enerkem and the University of Sherbrooke constructed a pilot-scale MSW gasification plant 
based on the Biosyn process coupled to steam cycle and gas engine in 2002.98 The plant remains 
operational, and produces syngas, methanol and second-generation ethanol.99 Enerkem is now 
working with the City of Edmonton to construct a fluidized bed MSW gasification facility to 
produce methanol and ethanol.100 The syngas produced will be used to generate electricity.101 
The modular configuration of Enerkem’s systems enables facilities to be scaled to desired 
feedstock input and energy production.102 The system can be configured to utilize between 500 
kg per hour and 15 tonnes per hour.103 

Entech has installed small-scale grate gasification systems for MSW-biomass coupled to steam 
cycle turbines at a resort complex and a university.104 These systems convert 30 t/day and 
50t/day, respectively, of MSW-biomass into energy. 

Interstate Waste Technologies developed their ThermoSelect technology as a pilot-scale facility 
in Karlsruhe, Germany and Chiba, Japan.105 The Thermoselect process uses gasification of MSW 
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coupled to a gas engine. The Karlsruhe facility was closed in 2004 following a number of 
environmental violations and technical problems.106 

Environmental advantages of fluidized bed gasification systems include fewer emissions of trace 
organics, due to mechanical turbulence and high residence times, as well as more complete 
combustion and higher ash quality when feedstocks are processed to small particle size.107  

Relatively simple design, long service life and low capital cost and maintenance costs make 
these systems economically attractive.108 Fluidized bed systems are also capable of 
accommodating a wide range of feedstock types and rates of feedstock input.109 However, these 
systems require skilled operators and are sensitive to variations in particle size.110   

8.2.3 Potential for use of tires as a feedstock 

No pilot or commercial gasification projects using tires as a feedstock were discovered. 

8.2.4 Best known data sources for technology applications for MSW or 
MSW and tire feedstock 
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8.3 Pyrolysis 

8.3.1 Description 

Pyrolysis involves thermal decomposition of feedstock (e.g. MSW) into oils, gases, and char 
under oxygen-free conditions.111,112 All products of pyrolysis may be used as combustible 
fuels.113 Relative proportions of the resulting products created depend on heat, pressure and 
duration of treatment.114 Pyrolysis has also been proposed as a method to break down tires into 
marketable products such as steel, oil and carbon black.115 

8.3.2 State of the technology 

At present, pyrolyis is most commonly used to produce coke from coal. Pyrolysis feedstocks 
now include MSW, agricultural wastes and wastewater treatment sludge, however, application of 
pyrolysis technologies to sold waste streams does not have a long history.116 There are currently 
few providers of this type of technology.117 Pyrolysis of MSW or MSW and tires is currently at 
the pilot scale in Canada.118 In fact, the only commercial-scale MSW pyrolysis facility ever 
constructed in the U.S. was developed in California and shut down after two years of operation 
due to failure to produce a marketable oil product.119 

Compact Power utilizes tube pyrolysis and gasification of MSW coupled to a steam cycle turbine 
to generated electricity.120 Its first commercial plant was developed in Bristol, UK and included 
two pyrolysis tubes, which were used to process 8,000 tonnes of waste each year.121  

Organic Energy has developed three small to mid-sized facilities; one in Norway and two in 
Korea. Seven additional plants are being developed.122 Their modular technology systems are 
capable of consuming between 3,500 and 7,500 tonnes of MSW each year.123  
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Brightstar Environmental has patented its Solid Waste Recycling and Energy Recovery, or 
SWERF®, process that uses tube pyrolysis coupled to a gas engine to generate energy.124,125 The 
firm’s pilot plant in Wollongong, Australia was closed in 2002 due to financial issues.126 
Additional plants had been proposed, but were never developed. 

In March 2010, S4 Energy Solutions LLC announced plans to develop a plasma gasification 
facility at Waste Management’s Columbia Ridge Landfill in Arlington, Oregon.127 The company 
is a joint venture by Waste Management, Inc. and InEnTec LLC. The facility is expected to 
come online within the year.128 

Environmental benefits of pyrolysis systems include the ability to create few air emissions with 
the use of lower-cost pollution control equipment.129 High process temperatures trap pollutants 
such as heavy metals and sulfur in bottom ash therefore, emissions are typically lower than those 
of incinerators.130 Emissions control equipment may only be required on turbines or boilers.131 

Small, localized units, such as those developed by Organic Energy, allow waste to be processed 
near the source and reduce capital and transportation costs,132 however, these units are often 
more costly relative to large-scale facilities.133 Typical design specifications are for plants 
utilizing MSW in the range of 25,000 to 40,000 tonnes per year, and feedstock must be shredded 
prior to use.134 
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Start up periods also tend to be shorter for pyrolysis facilities than for incineration facilities. 
Pyrolysis facilities can also operate below full capacity.135 

The failure of commercial-scale MSW pyrolysis to date has been attributed to high costs, system 
complexity and inability to accommodate feedstock inconsistencies.136 

8.3.3 Potential for use of tires as a feedstock 

Beven Recycling partnered with the UK Atomic Energy Authority in 2002 to operate a tire 
pyrolysis facility for four to five years in Witney, UK.137,138 Environmental Waste International 
also operated a four-year tire pyrolysis pilot plant for four years, between 1994 and 1998.139 

Table 17(below) outlines 2006 data about tire pyrolysis, gasification and liquefaction plants 
across the world. 

Table 17. Tire pyrolysis, gasification and liquefaction plants in 2006
140
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A 2008 investigation into the use of tires for pyrolysis by Nova Scotia Environment expressed 
hesitation about the use of tire pyrolysis technologies based on a “high rate of business 
failure.”141 There are currently no commercial-scale tire pyrolysis facilities operating in North 
America, Japan or Europe.142 However, Nova Scotia Environment conceded that it would 
evaluate a pyrolysis facility if a technology provider was able to present a sound technical and 
financial feasibility review.143 

The only two commercial-scale tire pyrolysis facilities in the world are located in Kaohsiung, 
Taiwan, and Shanghai, China.144,145 The Shanghai facility is operated by Kimkey (Shanghai) 
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Environmental S&T Co. Ltd. and produces heating oil (35%-45%), carbon black (35%-40%), 
steel wire (15%-30%) and gas (5%-12%).146 

Delta Energy, based in North Dakota, claims to have developed a commercially-ready tire 
pyrolysis application. The technology conducts pyrolysis at a temperature of 800 F, and produces 
butane-propane, oil and solid carbon.147 The company established a successful pilot-scale facility 
in 2002 that produced one gallon of butane-propane, 1.4 gallons of oil and 8 pounds of carbon 
per 20 pounds of shredded tires.148 The waste stream was approximately 2 to 3% of the original 
input, by weight.149 

Due to the size of the pilot facility, the butane-propane was flared; at the commercial scale, this 
fuel would be used for heating and for generating electricity onsite.150 The carbon product 
consisted of 80% carbon and 20% additives, and was sold to manufacturers of mining belts and 
tires.151  

Delta Energy representatives state that the pilot facility met all applicable U.S. EPA air quality 
requirements.152 They are now seeking to develop four to five new commercial plants in Canada 
and the U.S. 

Carbon Green Inc. recently completed construction of their 800,000 tire-per-year commercial-
scale pyrolysis facility in Cyprus.153 This facility is currently the largest pyrolysis plant in the 
world.154 The Carbon Green process converts used tires into high-grade steel, a #2 diesel 
equivalent oil, a clean-burning gas155 and a unique product called Carbon Green™ - a carbon 
black substitute accredited and accepted by the European Union.156,157 The diesel oil can be used 
to generate electricity offsite, and the gas can be used either on or offsite to generate electricity 
for the plant or sold for carbon credits.158 Facility design is based on a two-year pilot project 

                                                 
146

 Kimkey (Shanghai) Environmental S&T Co., Ltd. website: http://www.kimkeyoo.com/pyrolysissystem.asp.  
147

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
148

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
149

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
150

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
151

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
152

 Duane Erickson, Manager, Delta Energy, personal communication, April 22, 2010. 
153

 Carbon Green Inc. (no date) Factsheet: Recycling Today’s Waste for Tomorrow’s Energy (accessed May 11, 

2010) http://www.carbongreeninc.com/docs/FactSheet_nd.pdf.  
154

 Carbon Green Inc. (no date) Factsheet: Recycling Today’s Waste for Tomorrow’s Energy (accessed May 11, 

2010) http://www.carbongreeninc.com/docs/FactSheet_nd.pdf. 
155

 Marketwire (April 13, 2010) “Carbon Green Inc. Files 8K/A-1 and Provides Update on Operations” (accessed 

May 11, 2010) http://www.marketwire.com/press-release/Carbon-Green-Inc-Files-8K-A-1-and-Provides-Update-

on-Operations-OTC-Bulletin-Board-CGNI-1146774.htm. 
156

 Carbon Green Inc. (no date) Factsheet: Recycling Today’s Waste for Tomorrow’s Energy (accessed May 11, 

2010) http://www.carbongreeninc.com/docs/FactSheet_nd.pdf. 
157

 Marketwire (April 13, 2010) “Carbon Green Inc. Files 8K/A-1 and Provides Update on Operations” (accessed 

May 11, 2010) http://www.marketwire.com/press-release/Carbon-Green-Inc-Files-8K-A-1-and-Provides-Update-

on-Operations-OTC-Bulletin-Board-CGNI-1146774.htm. 
158

 Marketwire (April 13, 2010) “Carbon Green Inc. Files 8K/A-1 and Provides Update on Operations” (accessed 

May 11, 2010) http://www.marketwire.com/press-release/Carbon-Green-Inc-Files-8K-A-1-and-Provides-Update-

on-Operations-OTC-Bulletin-Board-CGNI-1146774.htm. 



/ 

The Pembina Institute 70 End-of-Life Tire Management LCA 

operated in Europe.159 The company claims that the technology is profitable without the support 
of government subsidies160 and that the facility will be cash-flow positive by May 2010.161 Full 
production is also anticipated to be reached by May 2010.  

8.3.4 Best known data sources for technology applications for MSW or 
MSW and tire feedstock 

Duane Erickson, Manager, Delta Energy.  

University of California Riverside (March 2006) Technology Evaluation and Economic Analysis 

of Waste Tire Pyrolysis, Gasification, and Liquefaction (prepared for the State of California, 
Integrated Waste Management Board), 
http://www.calrecycle.ca.gov/publications/Tires/62006004.doc. 

Jeff Takeyasu, Trimark Engineering (2007) Southern Alberta Energy Partnership – Waste to 

Energy Treatment Alternatives Study. 

Friends of the Earth (2002) Briefing: Pyrolysis and gasification. 
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8.4 Plasma  

8.4.1 Description 

 

Figure 38. Plasma conversion process diagram. 

The plasma conversion uses electrically generated plasma torches to convert feedstock into gas and 

a slag byproduct162 in an oxygen-deprived environment under controlled temperatures. The 
resulting synthetic fuel gas, or “syngas,” is cleaned and then used to operate internal combustion 
engines to generate electricity. The remaining inert materials contained in the waste, such as 
metal, dirt and glass components, which cannot be converted into fuel-gas, are treated by a third 
plasma torch to form an glass-like slag product. Once processed in this way, the slag is 
completely inert and stable and can be sold as aggregate for roads or construction materials. 

The MSW stream enters the primary chamber of the converter where the material is gasified by 
heat recovered from the gases exiting the refining chamber. Within the refining chamber, there 
are two plasma torches. The gasified product from the primary chamber contains carbon 
monoxide, hydrogen and tars together with unreacted carbon. This gas is refined into a cleaner, 
lighter syngas in the secondary chamber. Process air and plasma heat are combined with the 
syngas and the plasma heat is adjusted to maintain the desired process chamber conditions. All 
long chain hydrocarbons are destroyed in the process.  

Resulting syngas is sent to a recuperator to heat process air and then cooled prior to undergoing 
gas cleaning. 
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8.4.2 State of the technology 

Plasma arc gasification of MSW or MSW and tires is currently at the developmental stage in 
Canada,163 however, plasma arc technology has been well established in the steel and 
construction industries.164 

A pilot-scale plasma arc facility for MSW was constructed in Yoshii, Japan in 1999.165 The 
project led to development of a full-scale commercial facility in Utashinai City, Japan that 
became operational in 2003.  

PEAT International also constructed a plasma arc facility capable of utilizing a variety of wastes 
at the National Cheng Kung University in Tainan City, Taiwan.166 The facility has been 
operating at a demonstration scale since 2005 and consumes three to five tonnes of waste per 
day.167  

Two Canadian companies, Plasco Energy Group and Pyrogenesis Canada Inc., market plasma 
arc systems for MSW. While Pyrogenesis Canada Inc. has only demonstrated their technology 
for MSW at the pilot scale,168 Plasco Energy Group currently operates two MSW plasma arc 
gasification facilities; one in Ottawa, Ontario and the other in Castellgali, Spain.169 The Ottawa 
facility is the only plasma arc facility operating in North America170 and was developed as a 
commercial-scale demonstration project through a partnership with the City of Ottawa. The plant 
has been consuming 85 tonnes per day of MSW and delivering power to the grid since 
2007.171,172 The Castellgali facility utilizes five tonnes of waste per day and operates as a 
demonstration centre.173 Plasco has been commissioned to develop two additional facilities: a 
400-tonne per day community facility in Ottawa and a 200-tonne per day facility in Red Deer, 
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Alberta.174 The Red Deer facility is expected to come online in late 2010.175 These additional 
projects will be financed, built and operated by Plasco, reducing the burden of financial risk to 
the host municipalities.  

Sunbay Energy Corp. has been commissioned to develop an MSW and TDF plasma arc 
gasification facility in Port Hope, Ontario that will consume 360 tonnes of feedstock per day.176 
However, Sunbay has undergone recent restructuring and development of the facility has been 
delayed.177  

Advanced Plasma Power constructed a test facility in Farington, Oxforshire that produces 
hydrogen, syngas, energy and vitrified gravel from refuse-derived feedstock.178 A commercial 
test facility has been developed in Swindon, Wiltshire and a commercial facility that is expected 
to use 100,000 tonnes-per-day is being planned for a third location in the UK.179 

Table 18 (below) provides a list of proposed plasma arc gasification projects in North America. 

Table 18. Proposed plasma gasification projects in North America
180
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There are currently six key technical challenges to energy generation from MSW using plasma 
technology: heat transfer, scale and modularity, heterogeneity, relatively low calorific value, 
relatively high moisture content (30 to 60% by weight), and high ash content.181  

The plasma arc is a relatively localized heat source; therefore, scaling up the technology for 
commercial application poses technical challenges.182 Use of multiple plasma arcs has been 
recommended as a possible solution.183 However, use of multiple torches and multiple refractory 
lined reactors increases capital cost significantly.  

The heterogenous nature of MSW and variability of input particle size also produces technical 
challenges.184 Waste composition, heat transfer rates and residence times must be adjusted 
accordingly. 

The majority of plasma facilities that use MSW feedstock are plasma gasification facilities, as 
opposed to plasma pyrolysis.185 Plasma gasification of MSW can generate significant amounts of 
tar and particulate matter, which increases facility costs, particularly when the process aims to 
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recover syngas.186 Consequently, treating large volumes of MSW using plasma technology 
presently carries significant technical risk.187 

While the relatively low calorific value of MSW does not pose a technical challenge for plasma 
gasification, it may cause facilities to be uneconomical.188 And while plasma technologies can 
accommodate a range of moisture contents, the upper limit for feedstock moisture has been 
postulated to be around 75%.189 Higher moisture feedstocks also require additional energy input 
for plasma gasification.  

Inorganic ash is required to maintain stable and adequate slag formation during plasma 
gasification.190 If ash content of MSW is insufficient, slag-forming additives may be required, 
resulting in additional cost.191 

An additional technical issue, that appears to have been addressed during construction of 
Plasco’s Ottawa facility, is the durability of liners in the equipment.192 High temperatures and 
chlorine compounds released from feedstock have led to rapid liner breakdown in other 
facilities.193 Plasco appears to have overcome this issue with the use of lower operating 
temperatures and a brick liner.194 

Systems are available in the range of five to 200 tonnes per day, but capital and operating costs 
of plasma arc technology are typically high.195 Some suppliers of plasma arc technology claim 
that the process is emissions-free,196 but these claims have yet to be solidly substantiated. 

8.4.3 Potential for use of tires as a feedstock 

There are presently few proposals for dedicated tire plasma arc technologies and applications. 
W2 Energy Inc. of Toronto announced in March 2009 that the company would be developing 
three separate four-tonne per day tire plasma arc facilities in each of three separate countries.197 
The tires will be converted into syngas, which will be used to produce diesel and electricity, 
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using a steam turbine.198 Plasco’s pending plasma MSW plant approvals in both Ottawa and Red 
Deer could presumably entertain the application of tires as part of their feedstock. 

8.4.4 Best known data sources for technology applications for MSW or 
MSW and tire feedstock 

Juniper Consultancy Services Ltd. (2009) Plasma Technologies: A Decision-Maker’s Guide. 

Jeff Takeyasu, Trimark Engineering (2007) Southern Alberta Energy Partnership – Waste to 

Energy Treatment Alternatives Study. 
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9. Completed Issues 
Scoping Template 
Example 

Scoping templates were completed for each of the eight recycling options at the beginning of the 
project to identify potential environmental issues. Table 19 below is an example of a scoping 
template for the TDF (Cement Kiln) recycling option. 

Table 19. Example Scoping Template 
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10. Tire Fires 

10.1.1 Probability and Environmental Impact of Tire Fires 

While tire fires occur relatively infrequently, they are serious situations often requiring 
community evacuation, sustained firefighting efforts and expensive cleanups. Tire fires result in 
considerable environmental impact and safety concerns. These are summarized below, along 
with some discussion on the frequency of tire fires, examples of notable tire fires, and tire 
storage management advice to reduce tire ignition risk and mitigate tire fire severity.  

10.1.1.1 Cause and Common Ignition Sources 

Any mass storage of recycled tires carries an inherent fire risk. Arson is the leading cause of tire 
fires. Other igniters have been grass and forest fires, lightning strikes and accidental starts, such 
as from cigarettes, welding or fire on adjacent properties.199 

Improper tire storage is a key contributing cause of tire fires, with such factors as increasing pile 
size, code violations, numerous changes in ownership and high personnel turnover leading to 
increased fire risk.200  

Scrap tires are difficult to ignite; however, once a tire fire starts it is very difficult to control and 
extinguish. Tires burn well because of their high flame temperature and their hollow doughnut 
shape, which traps oxygen, making it very challenging to eliminate air supply. Tire fires can burn 
for months or, in some cases, even years.201  

10.1.1.2 Key Environmental and Safety Issues 

Tire fires can have serious environmental and safety impacts and consequences, described in 
more detail below. 

Environmental 

Fire causes tires to break down into hazardous compounds including gases, oil and heavy metals. 
Tire fires are characterized by incomplete combustion, producing thick clouds of toxic black 
smoke and a highly flammable oily residue.202 The average passenger car tire is estimated to 
produce about eight litres of oily residue when burned.203 For every million tires consumed by 
fire, about 208,000 litres of runoff oil containing dangerous chemicals is produced, which can 
leach into soil, ground and surface water unless effectively contained.204  
                                                 
199 Slaughter, Rodney. “Rings of Fire: Tire Fire Prevention and Suppression” California State Fire Marshal, June 2004. 
200 Slaughter, Rodney. “Rings of Fire: Tire Fire Prevention and Suppression” California State Fire Marshal, June 2004. 

201 Slaughter, Rodney. “Rings of Fire: Tire Fire Prevention and Suppression” California State Fire Marshal, June 2004. 
202

 Murray, W., Government of Canada, Science and Technology Division, 1996, Accessed at http://dsp-

psd.pwgsc.gc.ca/Collection-R/LoPBdP/BP/bp431-e.htm.  
203 Rubber Manufacturers Association, April 2003 
204 United States Environmental Protection Agency. Accessed at www.epa.gov/osw/conserve/materials/tires/fires.htm 
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Maintain fire breaks and fire lanes for access  

Minimize potential ignition sources – install lightning rods and security for arson prevention 

Prohibit heating devices and ignition sources such as welding or open flame near tires 

Eliminate brush, grass and other combustibles within the storage area and for an appropriate 
distance around the perimeter   

Comply with recommended tire pile height and total area restrictions 

Design an effective automatic sprinkler system for indoor tire shredding or crumbing equipment 

The severity of tire fire incidents can be reduced by: 

Storing tires away from people and communities 

Having an effective fire evacuation plan for the surrounding community  

Working with the fire department to develop an emergency response plan and a fire crew 
response plan that addresses the unique challenges of tire fires 
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11. Data Sources 

The major datasets used in this analysis are summarized in Table 20 below. Wherever possible, 
Alberta specific data was used to model the Alberta context as closely as possible. Datasets 
where Alberta specific data was not possible are indicated in the last column in the table.  

Table 20: Datasets Used in Analysis 

Dataset Data Source 
Specific to 

AB 

Produce Asphalt Shingles 

Athena Sustainable Materials Institute, A 
Life Cycle Inventory of Selected 
Commercial Building Products (April 
2001). Chapter 2. 

N 

Produce Portland Cement 
Portland Cement Association, Life Cycle 
Inventory of Portland Cement Concrete 
(2007).  

N 

Produce Timber 

Chalmers University of Technology, LCA 
of Building Frame Structures, 
Environmental Impact over the Life Cycle 
of Wooden and Concrete Frames (1997). 

N 

Produce Concrete 
Portland Cement Association, Life Cycle 
Inventory of Portland Cement Concrete 
(2007).  

N 

Produce Virgin Steel 
NREL, Life Cycle Inventory Database. 
http://www.nrel.gov/lci/ (accessed Jan to 
Sept 2010). 

N 

Shear and Shred Tires 

Navigant Consulting, LCA Tire 
Recycling_v19CS.xlsx. Phase 1 of life 
cycle inventory summarizing GHG 
emissions for recycling options. 

Y 

Crumb Tires 
Navigant Consulting, LCA Tire 
Recycling_v19CS.xlsx.  

Y 

Manufacture Tire Products 
Navigant Consulting, LCA Tire 
Recycling_v19CS.xlsx.  

Y 

Process Tires in Cement Kiln 

(1) Scrap Tire Management Council, The 
Use of Scrap Tires in Rotary Cement 
Kilns (2005). 
 
(2) Delta Air Quality Services, AB2588 
Emissions Testing at California Portland 
Cement Company’s Colton Plant; Coal 
and Coal with Tires Firing (1999). 
 
(3) CANMET, Scrap Tire Recycling in 
Canada (2005) 

N 

Process Tires in T2E 

Connecticut Department Environmental 
Protection, Operating Permit for Exeter 
Energy. Permit to operate from April 
2010 to April 2015 (2010). 

N 
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Refine Crude Oil NREL, Life Cycle Inventory Database. Y 

Transport Crude Oil 

(1) U.S. Dept of Energy AP42.  
 
(2) M. Deluchi, Emission of Greenhouse 
Gases from the use of Transportation 
Fuels and Electricity, Volume 2 (1991)., 
Appendix A. 

N 

Extract Crude Oil 

CAPP, A National Inventory of 
Greenhouse Gas (GHG), Criteria Air 
Contaminant (CAC) and Hydrogen 
Sulphide (H2S) Emissions by the 
Upstream Oil and Gas Industry (2004). 

Y 

Extract Bituminous Coal NREL, Life Cycle Inventory Database. N 

Process Tires in Coal Plant 

(1) EPA, Air Emissions from Scrap Tire 
Combustion 1997). 
 
(2) NREL, Life Cycle Inventory 
Database. 

N 

Produce Polypropylene Crumb NREL, Life Cycle Inventory Database. N 

Mine and Crush Limestone NREL, Life Cycle Inventory Database. Y 

Produce Polypropylene  NREL, Life Cycle Inventory Database. Y 

Produce Propylene NREL, Life Cycle Inventory Database. Y 

Recycle Steel 

(1) RTI International, Life Cycle Inventory 
Data Sets for Material Production of 
Aluminum, Glass, Paper, Plastic, and 
Steel in North America (2003). 
 
(2) ICF Consulting, Determination of the 
Impact of Waste Management Activities 
on GHG Emissions: 2005 Update Final 
Report (2005). 

Y 

Extract Iron Ore 

Statistics Canada, Metal Ore Mining. 
NAICS 2122 (2006), 
http://www.statcan.gc.ca/pub/26-223-
x/26-223-x2006000-eng.pdf. 

Y 

Extract Aggregate 

Statistics Canada, Non-metallic Mineral 
Mining and Quarrying NAICS 2123 
(2005), http://www.statcan.gc.ca/pub/26-
226-x/26-226-x2006000-eng.pdf. 

Y 

Produce Binding Agent NREL, Life Cycle Inventory Database. Y 

 

 


